

A Deep Dive into Food Recovery Program Design:

A comprehensive discussion of the decision points involved in designing a food recovery and composting program

September 11, 2014

Thank You To Our Sponsors

Series Sponsor

A special thank you to Landmark Studio & Design for their sponsorship of this webinar

Your Panel

Nicole Chardoul Principal and Vice President Resource Recycling Systems

Melissa Dupuis Sustainability Officer University of Winnipeg

Campus Sustainability Office

Food Waste Collection and Processing Options

Nicole Chardoul

September 11, 2014

Providing solutions to meet the resource management and waste recovery goals of clients and their supply chains

The soil is the great connector of lives, the source and destination of all. It is the healer and restorer and resurrector, by which disease passes into health, age into youth, death into life. Without proper care for it we can have no community, because without proper care for it we can have no life.

> Wendell Berry The Unsettling of America: Culture and Agriculture

Why Focus on Food Waste

Policy Supporting Food Waste Reduction and Composting

Planning and Considerations

Collection and Processing Options

What Can Be Done?

How to Reduce Food Waste? What can be done with Leftover Food Waste?

Benefits of Managing Food Waste

Source: Waste360 Source: Wall Street Journal

The Numbers Behind Your Food Waste

Sustainable waste management, reduction, and disposal practices are a valuable piece of the supply chain.

1 ton Methane = 12 tons CO2 Equivalent

Planning and Considerations

Material

- Policies & Regulations
- Volumes and Sources

Logistics

- Partnerships & Collaborators
- Collection & Hauling
- Staffing
- Contamination
- Location & Space
- Available Technologies

Financial

- Capital Costs
- Operating Costs
- End Use / Markets

Education

- Training
- Leadership & Staff Buy-In
- Reduction & Diversion

Material

Regulatory Overview / Trends

National

The State of Connecticut requires composting of food waste for all businesses that generate at least 2 tons/week of source separated organics, and within 20 miles of a composting facility.

The State of Vermont requires source separation of FW and management according to FW hierarchy. Phase-in beginning with entities producing 2T/week or more as of July 2014.

State of Massachusetts

requires diversion of food waste from landfill for all businesses that generate at least 1 ton/week of source separated organics.

Regional

County Food Policy Councils and Solid Waste Plans focusing on local food and zero waste campaigns and special events, as well as supporting improved composting infrastructure.

Local

City Solid Waste Resource Plans

targeting 40% or more waste diversion rates and expansion of food waste composting and zero waste efforts.

University

Sustainability Plans include waste

reduction goals and targeting high landfill diversion rates. Food Waste Diversion and Food Waste Packaging policies are a mechanism for zero waste and diversion goals

Material

Policies Drive Progress

Policies can encourage composting and zero waste programs

Guidelines/Incentive System

- Requirements for take-out containers (reusable, compostable, recyclable)
- Green Purchasing / Product Bans
- Local Purchasing
- Purchasing Cooperatives

Composting Infrastructure

- Year-round compostables collection
- Local composting facilities
- Collaboration with farms

Zero Waste Collaboration

- Sports events
- Municipal events
- Public space composting
- Waste-free school lunches

Public Education

- Food waste prevention campaign
- Home / Onsite composting
- Food Donation
- Farm to Table / Healthy Food in Schools and Healthcare

Volumes and Sources

- Assess and Pilot to collect data on participation and volumes
- Evaluate volumes of compostable materials and sources
 - Food waste, yard waste, foodservice ware, paper towel, animal bedding
 - From kitchens, cafeterias, lounges, to-go kiosks and cafes, campus grounds and landscaping, animal research labs

- Trash
- Recyclables
- Pre-Consumer FW
- Post-Consumer FW
- Non-Recyclable Papers

Volumes and Sources

Example Food Waste Projections

Assumptions		Facility	Cafeteria transactions per day	Without bioware Lbs /day	With bioware Lbs /day
Participation rate	80%	Residence Hall 1	600	168	288
Cafeteria transaction lbs	0.35	Residence Hall 2	1300	364	624
Cafeteria lbs w/bioware	0.60	Residence Hall 3	168	47	81
Density (lbs/CY)	600	TOTAL		579	993

Volumes and Sources

Example Compost Recipes if composting on-site

	Weight (tons/year)	Volume (CY)	Nitrogen (dry weight %)	C:N (dry weight)	Moisture Content	Bulk Density
Expected Food Waste	87	290	3.1%	15	70%	600
Expected Yard Waste	56	321	2.5%	20	50%	350
Wood Chips	50	250	0.1%	600	50.0%	400
Corrugated Cardboard	5	100	0.1%	550	8.0%	100
C:N Desired Carbor	28. n Ratio is 30	.37 D:1	Moisture C Desired M	Content oisture Conten	tis 559	58% to 60%

Logistics

Partnerships/Collaborators

Education and Enforcement

- Funding for education, oversight
- Development and maintenance of resources

Foodservice Vendors

- Foodservice providers (internal/external)
- Recyclables versus compostables

Policies and Regulations

- EPP and zero waste policies for reusables, compostables and recyclables
- Planning/Zoning
- Health department rules for reusable containers
- Use of food waste as animal feed (USDA)

Infrastructure / Space

- Space for new waste streams and containers
- Compost sites accepting food waste
- Transportation/Haulers
- Compost markets

Food Waste Sources

- Residence Hall Cafeterias (pre- and/or post-consumer)
- Take-out cafés
- Research lab animal bedding
- Athletics
- Special events

Logistics

In-Building Collection and Infrastructure Considerations

- Pre-Consumer / Food Prep Waste
 - From prep station directly into Brute barrel or Slim Jim, lined or unlined
 - Can run through pulper
- Bins for Post-Consumer Food Waste
- Tray and Dishwashers
- Signage
- Staffing

Source: City of Ann Arbor

Source: Resource Recycling Systems Inc. Bronson Hospital, MI

Source: Cornell University

Dewatering/Digester Option

- \$20 to \$50/ton
- 20 500 lbs/day
- 24 hours, followed by composting and curing for 30 days
- Pulper and Digester: \$25,000-\$50,000
- Maintenance cost and odor considerations

Dock Collection and Upgrades

- Containers rolled to dock
 - Cart-swap program

Logistics

- Emptied into compactor, compacting truck or dumpster lined with cardboard
- Can be emptied / transported into onsite in-vessel composter
- Dock Modifications
 - Dumpsters
 - Compactors / Electrical
 - Dock / Railings

On-Site Space and Site Restrictions

- Space and site constraints are the primary factor dictating in-building and dock containers, and composting method
 - Food waste hauled to an off-site composting facility
 - On-site farm for windrows/aerated static piles
 - On-site in-vessel unit

Transportation

- Off-site processing requires transportation to the composting site or local farm
- Cost varies, but usually is more cost effective than landfilling if site is local
- Composting sites can work with haulers to provide this service
- Collaborate with other food waste generators, haulers, farmers, processors

Source: Resource Recycling Systems Inc.

Avoided Food Waste

Operational Costs Education/Outreach – "How To"

EXAMPLE

Environmental Cost/(Benefit)

For every ton of food waste avoided, almost 2.0 tons of CO2e are avoided

Avoided Disposal

Disposal cost estimate based on \$50/ton tipping fee

Operating Costs

Education Program\$19.0/tonAvoided Disposal\$(50.0)/ton\$(31.0)/ton

Environmental Costs/(Benefits)

 Avoided Transport
 \$(36.0)/ton

 Avoided Landfill
 \$(40.0)/ton

 \$(76.0)/ton

Capital Costs

None

EXAMPLE

Small Scale On-site Composting

Capital Costs Approx. \$25,000 (\$50,000 w/shredder) Finished Compost in 2 to 4 months

Operational Costs Education/Outreach – "How To" Small operational costs

Environmental Cost/(Benefit) Avoided transport costs and landfill methane emissions based on \$28/ton CO2e

Avoided Disposal

Residential disposal cost estimate based on \$50/ton tipping fee

Source: The Green Team

Operating Costs

Education Program Marginal Coll. And Op. Costs **Avoided** <u>\$(50.0)/ton</u>

\$19.0/ton \$20.0/ton \$(31.0)/ton

Environmental Costs/(Benefits)

Avoided Transport \$(36.0)/ton **Carbon Emissions** \$25.0/ton **Avoided Landfill** \$(40.0)/ton \$(51.0)/ton **Capital Costs**

Bin Purchase

\$57.5/ton \$**57.5/ton**

EXAMPLE

Source Separated Collection

Capital Costs Site construction (10 yr amort)

Operational Costs Collection, education and transfer to compost site

Environmental Cost/(Benefit)

Carbon cost of collection vehicles and transfer based on \$28.24/ton CO2e

Operating Costs

Transfer Tipfees **Fducation Collection Costs**

\$15.0/ton \$18.5/ton <u>\$450.0/ton</u> \$483.5/ton

Environmental Costs/(Benefits)

Collection/Transfer Avoided Landfill \$(40.0)/ton

\$10.8/ton \$(29.2)/ton

\$375.3/ton

Capital Costs

\$59.9/ton Site Mods Truck Modifications \$165.9/ton Carts/Bins \$149.5/ton

EXAMPLE

Co-Collection With Yard Waste

Additional Infrastructure

Site Modifications (10 yr amort)

Operational Costs

Education/Outreach, additional stop time, collection costs, transfer costs and tip fees to site

Environmental Cost/(Benefit)

Carbon cost of collection and transfer based on \$28.24/ton CO2e

Operating Costs

Education Program\$19.0/tonMarginal Coll. Costs\$141.0/ton\$160/ton

Environmental Costs/(Benefits)

 Collection/Transfer
 \$10.8/ton

 Avoided Landfill
 \$(40.0)/ton

 \$(29.2)/ton

Capital Costs

 Site Mods
 \$ 64.0/ton

 Cart Costs
 \$146.9/ton

 \$210.9/ton

EXAMPLE

Collection Performance

EXAMPLE

Windrow Composing

Capital Costs Assume use of existing facility

Operational Costs

Full marginal operating costs based on local tip fees. Avoided landfill tip fees.

Environmental Cost/(Benefit)

Site operations and emissions and avoided landfill emissions based on \$28.24/ton CO2e

Operating Parameters

10 to 200 tons/day 4 to 12 months to compost 1 acre of windrows per 1,000 tons of material

Operating Costs

Labor/Maintenance	\$12.0/ton
Operating Costs	\$ 5.0/ton
Avoided Landfill Fees	<u>\$(50.0)/ton</u>
	\$(33.0)/ton

Environmental Costs/(Benefits)

Site Operations Landfill Emissions \$(39.6)/ton Fertilizer Replacement (\$(84.1)/ton

\$57.1/ton \$(64.6)/ton

Capital Costs

Site improvements **Equipment Purchase**

\$3.0/ton \$ 3.0/ton \$6.0/ton

EXAMPLE

Aerated Static Pile

Capital Costs

Assume use of existing facility

Operational Costs

Full marginal operating costs based on local tip fees. Avoided landfill tip fees.

Environmental Cost/(Benefit)

Site operations and emissions and avoided landfill emissions based on \$28.24/ton CO2e

Operating Parameters

10 to 200 tons/day 4 to 12 months to compost

Source: Stopwaste.org

Operating Costs

	\$(32.0)/ton
Avoided Landfill Fees	\$(50 0)/tor
Operating Costs	\$ 5.0/tor
Labor/Maintenance	\$11.0/tor

Environmental Costs/(Benefits)

Site Operations\$57.1/tonLandfill Emissions\$39.6)/tonFertilizer Replacement\$(84.1)/ton

<u>\$(84.1)/ton</u> **\$(64.6)/ton**

Capital Costs

Site improvements

Equipment Purchase

\$ 4.0/ton <u>\$ 3.0/ton</u> \$**7.0/ton**

EXAMPLE

Covered Aerated Static Pile (ASP)

Capital Costs

Assume use of existing facility needing Additional equipment and building costs

Operational Costs

Full marginal operating costs based on local tip fees. Avoided landfill tip fees

Environmental Cost/(Benefit)

Site operations and emissions and avoided landfill emissions based on \$28.24/ton CO2e

Operating Parameters

0.5 to 800 tons/day 4 to 6 months

Operating Costs

Labor/Maintenance	\$14.0ton
Operating Costs	\$ 5.0/ton
Avoided Landfill Fees	<u>\$(50.0)/ton</u>
	\$(31.0)/ton

Environmental Costs/(Benefits)

Site Operations\$65.1/tonLandfill Emissions\$(39.6)/tonFertilizer Replacement\$(84.1)/ton

\$(58.6)/ton

Capital Costs

Site and Buildings Equipment Purchase \$ 4.8/ton <u>\$ 7.2/ton</u> \$**12.0/ton**

In-Vessel Composting

Capital Costs Brand new facility Specialized equipment purchase

EXAMPLE

Source: Engineered Compost Systems

Operational Costs

Full operating costs based on real costs of operation. Avoided landfill tip fees.

Environmental Cost/(Benefit)

Facility operations and emissions and avoided landfill emissions based on \$28.24/ton CO2e

Operating Parameters

2 to 800 tons/day 10 days to 4 months

Operating Costs

Labor/Maintenance Operating Costs Avoided Landfill Fees \$ 9.0/ton \$ 4.0/ton <u>\$(50.0)/ton</u> **\$(37.0)/ton**

Environmental Costs/(Benefits)

Site Operations Landfill Emissions Fertilizer Replacement

Capital Costs

\$82.1/ton \$(39.6)/ton <u>\$(84.1)/ton</u> **\$(41.6)/ton**

Site and Buildings Equipment Purchase \$ 3.0/ton <u>\$32.0/ton</u> \$**35.0/ton**

Anaerobic Digestion (AD)

\$50 to \$150/ton

EXAMPLE

Financial

- 500 to 250,000 gals/day
- 5 tons/day food waste minimum
- 2 to 3 months
- Methane production a bonus! Potentially use with a CHP to generate electricity
- Requires post-digestion composting to finish and cure product
- High capital costs requires partnerships with municipalities, commercial establishments and other institutions (community college, hospitals)

Source: Univ of California at Davis

Processing Performance

EXAMPLE

Financial

Overall System Performance

Financial

EXAMPLE

Education

Financial

- Develop a business case analysis to consider all options, including compost markets
- Review capital and operating costs specific to your location and staffing
- Make the case for leadership and employee buy-in
 - Financials / pay-back
 - Sustainability /diversion goals

Financial Education

Develop a Local Market and Community Awareness

- Use compost to grow local, healthy food
- Use as mulch in facility's landscaping
- Provide to employees to take home

Decentralized, local systems support local farmers, create local jobs and promote community awareness

Education

Using Technology to Educate and Create Solutions for Diversion

COLLEGE & UNIVERSITY RECYCLING COALITION

Training and Outreach

- Cafeteria users / customers
- Kitchen staff and practices
- Operations / housekeeping staff
- Lined vs. unlined carts
- Compostable 'to-go' containers
- Equipment (disposals, pulpers)
- Transportation / Dock operations
- Minimizing odors
- Alignment with Sustainability Goals

Closing the Loop

Be a leader in and support the growing trend of zero waste, sustainability and local, healthy food

ING COALIT

Thank you!

Nicole Chardoul, P.E. RRS, Principal and Vice-President 734-417-4387 nchardoul@recycle.com

Composting at The University of Winnipeg

Melissa Dupuis

Sustainability Officer

September 11 2014

The University of Winnipeg

- Downtown campus
- 10,000 students & 800 staff/faculty
- Winter city
- No municipal organic waste program

Composting Overview

- Pre & postconsumer program started in 2007
- 1st stage: Food service areas only
- Campus growth = opportunity for bins throughout campus

Partners: Institutional Commitment

THE UNIVERSITY OF WINNIPEG

NEWS RELEASE

March 4, 2005 For Immediate Release

Axworthy Calls for Fully Sustainable Campus

UWinnipeg President releases Campus Development Plan and challenges all to make 'four dimensions of sustainability' integral to learning, research, university operations.

FOR IMMEDIATE RELEASE - SEPTEMBER 13, 2007

WINNIPEG, MB - Dr. Lloyd Axworthy, President & Vice-Chancellor of The University of Winnipeg, body released UWinnipeg's Campus Development Plan and challenged students, fourly, staff and community members to develop a fully sustainable campus - one that meets the needs of the "four dimensions of studiatability excelopical, eccentrical, accide and cultural."

Asworthy made his remarks in his State of the University Address, held this moming before a capacity crowd in the rewry-removated Convection Hail. The address served as the kidouff went to the university's 400 Anniversary homecoming & Rearism Weekend that runs through this Sunday, and contests with the public release of the University's Campus Development Plan.

"Our ultimate goal is to create a truly sostainable compus," Anworthy said, "a compus that acts upon to local and global responsibilities to protect and enhance the health and well-being of humans and acceptions. In doing so, we will meet the needs of current generations in such a way that ensures that future generations can meet their needs."

The 45-minute presentation was a visionary speech by Asworthy - one that blended the institution's accompliatements of the past with its gasis for the laters. He reflected on the areas where the university has similarly established harded as a leader, acute as the influenced institute of Union Studies, the interdisciplinary Environmental Studies program and the innovative Student-Designed Najors.

Looking lowword, Assecting stressed the need for action on the record recording low Access Task Tonce to make port-secondary education more available to people who normally do not afferd unlevely. He called for schlich-nither research to address current pressing sublativability problems and to create a "participativo culture" in educational programming with no binners to address consensation and cover sergement.

He also addressed the task of fulfiling the goals of the university's recently-amounced graduate studies programs, the benefits of the proposed Science Complex, the need for continued dislogues and partnerships with the community, and the association for the function of Science to meet on children is hadred with the proposed Schulardon Callege for the Environment.

The strategy i am proposing is large." An worthy said, "however, the vision of an ecologically, accommodally and socially healthy university community with a thriving cutarra of cooperation and a notable statity to adapt to the demands of the coming age is the lens through which all activity undertaken on carnous much teaken.

"This comes down to our own personal human development," he continued, "a notion embedded in the iden of autainable development. Our intertion here is to support our students, faculy, staff, administrations and meighbours to continuously develop individually so that we might continuelly develop as an institution."

To provide the road map for the listure. UNInnipeg minesed its Campus Development Plan as a working document for futher discussion and review. The Campus Development Plan, which is the calimitation of campus and community constallations that begin in 2004 and continued through 2005 and 2006 - proposes a holisite approach to campus and community development that breaks down benims between the university and the neightandoc. Key proposed projects, many of which are already underway, include an enhanced theatre, a new theses centre open to the campus and community, affordable mixed housing and an expended discore to benefit both University of Winniges students and members of the communi-

Assestiny added that the group that developed the plan will be going back to the community for further consultation and follow-up in the near future.

Excepts from Dr. Asworthy's address may be seen at The University of Winniper's velocite, at http://www.uwinniper.calindeukurworthy-address-occessed-070013. The full hard of his address may be viewed in http://www.awinniper.calindeukurworthy-address-070013. The complete Campus Development Plan may be seen, at: http://www.uwinniper.calindeukurworthy-address-070013. The complete http:

Going Green: University of Winnipeg To Create Kyoto Compliance Task Force

WINNIPEG—The University of Winnipeg will announce its intention to join a growing number of educational institutions committed to embracing sustainable practices and policies that embody the spirit of the Kyoto accord.

At 1:00 p.m. on Saturday, March 5, 2005 at the University's OmniTRAX/Broe QUEST: North conference, President Lloyd Axworthy will call for the development of a comprehensive sustainability plan for the campus. Axworthy, on behalf of The University of Winnipeg, will also announce a plan to encourage all members of the Association of Universities and Colleges in

University of Winnipeg students have pushed hard on the issue of sustainability, and we' ve risen to their challenge calling for this University to become a leader in sustainable practices and policies.

-President & Vice-Chancellor Lloyd Axworthy, March 2005

Partners: Food Services

- Diversity Food Services
- 3 locations on campus
- Offers both reusable and compostable takeout containers.

Partners: Compost Collection

- The Forks a year round meeting place in downtown Winnipeg
- Target Zero commitments
- Biovator system
- Pick up compost from UWinnipeg

Challenges: Collection & Reporting

- Our current goal is 65% waste diversion by 2015
- Data collection and service providers problems

UWinnipeg's Waste Profile for FY2013, including waste sent for recycling, compost and disposal in the landfill.

Challenges: Bags

- Much more expensive than garbage/recyc ling bags
- More prone to ripping

Challenges: Sorting

Bins get moved, removed, and not replaced, leaving signs pointing to nowhere...

... and bins with no signs telling people what goes where.

- Cleaning staff
- Students/Staff
- External food service providers

Solutions

- Student educators
- New bins
- Cleaning staff education
- Consistent imagery/icons across campus

me.dupuis@uwinnipeg.ca

Campus Sustainability Office

Contact Information

Nicole Chardoul Principal and Vice President RRS nchardoul@recycle.com

Melissa Dupuis Sustainability Officer University of Winnipeg <u>me.dupuis@uwinnipeg.ca</u>

Series made possible by:

Join us for our next webinar:

Creating a Leaner and Meaner Waste Management Program

An in-depth look at the business decisions campuses are making to improve operational efficiency

> Thursday, November 13 1 PM – 2:30 PM ET

Series Partners:

